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Abstract
The approach based on kinetic equations is used to describe spin polarization of
conduction electrons in a semiconductor doped with d or f atoms and subject
to circularly polarized radiation. In the stationary state we find analytical
expressions for the spin polarization of band electrons, ρe, and spin polarization
of electrons in the impurity levels, ρi. It is shown that the degree of spin
polarization of the band electrons is mainly determined by the polarization type
of the light. On the basis of numerical results we conclude that ρe and ρi are
practically independent of the long-term relaxation processes in the subsystem
of magnetic impurities.

1. Introduction

The main issue in semiconductor spin electronics is the generation of spin polarized charge
carriers and their manipulation and control over distances comparable to the size of a
particular device. One of the most effective methods of spin control and spin manipulation
in semiconductors is based on the optical excitation and optical pumping of spin polarized
electrons [1, 2]. Using circularly polarized light one can create polarized electrons (holes) and
also manipulate spin polarization of the photogenerated carriers [3–5]. The optical orientation
of electron spin in semiconductors has been proposed long time ago [6, 7], and since then the
main efforts were focused on the investigation of some peculiarities of various spin relaxation
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mechanisms. The latter problem is of particular importance as the spin relaxation processes
determine the functionality range of many electronic devices. The corresponding results have
been already surveyed in several review articles [4, 8], but some important details of the issue
have not been addressed so far or are simply not well understood [9].

Recent interest in spin control and spin manipulation with optical methods is due to
possible applications in modern semiconductor nanoelectronics and nanospintronics [10–12].
The optical methods turned out to be very useful because they offer possibility not
only to generate a non-equilibrium spin density, but also to excite directly spin currents
in semiconductor nanostructures [12, 13]. The optical methods also allow to polarize
photogenerated electrons near the interface with a ferromagnet, which enables tunable
control of spin polarization and an effective combination of the electric and spin injection
mechanisms [14–17]. Apart from this, photoluminescence is commonly recognized as a
powerful method of controlling magnetic states in semiconductors [18].

In order to describe a non-equilibrium electron state in a semiconductor subject to a
polarized light, we apply the approach based on kinetic equations. We use a simple model
which relies on the excitation of electrons from a deep level in the gap to the conduction band.
We take into account spin polarization of electrons in the deep level and also different channels
of spin relaxation accompanying the photoexcitation processes. Thus, our approach essentially
generalizes a simplified picture based on a single spin relaxation time characterizing electronic
states. In addition, the approach accounts for the spin relaxation in different electronic states
and also variation of the spin density due to spin transport.

In section 2 of the paper we present the relevant kinetic equations and derive analytical
solutions for the stationary spin polarization of conduction and impurity electrons in some
limiting situations. Numerical results in a general situation and their detailed discussion are in
section 3. Summary and final conclusions are presented in section 4.

2. Theoretical description

We consider a model semiconductor with shallow impurity levels, which are completely
ionized. These levels are created by usual donor and acceptor impurities with concentrations
Nd and Na, respectively. In addition, we assume that impurities (of concentration NT) with
unfilled d or f shells create a deep level in the band gap. In the following we consider the
case of Nd � Na. Consequently, only the conduction band and deep impurity levels are taken
into consideration, as the acceptors partially compensate the donors and do not affect the spin
polarized electron transport. Typical examples of the materials, where such a situation can
occur are GaAs:Mn, GaN:Mn, and InP:Fe [19–21]. For definiteness, we consider the case of
InP:Fe [20, 21], where the iron impurities embedded in the tetragonal indium phosphate lattice
exist in two different states: Fe2+ with the equilibrium concentration of localized electrons nT0,
and Fe3+ with the equilibrium concentration of localized holes pT0.

Upon illumination of the semiconductor with circularly polarized light of the frequency
corresponding to the impurity absorption (transitions from the deep level to the conduction
band), the linear kinetics of spin polarized electrons in different states can be described by the
following set of equations [11, 21, 22]:

∂ N↑
∂ t

= −(Sn IL + σ)N↑ − β↑ N↑ + β↓ N↓ + γ↑n↑(NT − N), (1)

∂ N↓
∂ t

= −(Sn IR + σ)N↓ − β↓N↓ + β↑ N↑ + γ↓n↓(NT − N), (2)

∂n↑
∂ t

= (Sn IL + σ)N↑ − α↑n↑ + α↓n↓ − γ↑n↑(NT − N) + 1

q

∂ j↑
∂z

, (3)
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∂n↓
∂ t

= (Sn IR + σ)N↓ − α↓n↓ + α↑n↑ − γ↓n↓(NT − N) + 1

q

∂ j↓
∂z

, (4)

∂ E

∂z
= q

εε0
(Nd − Na − N − n), (5)

j↑,↓ = q

(
n↑,↓μn E + Dn

∂n↑,↓
∂z

)
, (6)

where

n = n↑ + n↓, N = N↑ + N↓, (7)

nT0 = Nd − Na, nT0 + pT0 = NT, N + PT = NT, (8)

and

V0 =
∫ l

0
E(z, t) dz, (9)

with V0 being the bias voltage. The concentrations of electrons with up and down spin
orientations in the deep level are denoted by N↑ and N↓ , respectively, whereas n↑ and n↓
are the corresponding free electron densities (electrons in the conduction band). In the Gauss
law (5), E stands for the electric field along the sample of length l due to the applied voltage
V0. All these quantities depend on the time t and coordinate z (not indicated explicitly, except
of equation (9)). The other parameters in equations (1)–(6) are: the intensities IL and IR of
the left and right polarized light, respectively; the cross-section Sn of the ionization centres;
the thermal excitation rate σ ; the inverse long-term relaxation (LTR) time β↑,↓ of localized
electrons (in the magnetic impurity system); the electron recombination rate via the impurity
centres γ↑,↓; the inverse LTR times for conduction electrons α↑,↓, and the current density j↑,↓.
Finally, the electron drift mobility μn is assumed to be independent of the spin orientation,
and the density of non-equilibrium holes in the impurity centres is denoted by PT. The other
parameters in equations (1)–(6) have their usual meaning.

In diluted magnetic semiconductors with a sufficiently low concentration of Fe impurities,
the exchange interaction between magnetic atoms is weak as compared to the spin–lattice
interaction [23]. The parameters α and β are then equal to the inverse spin relaxation times
due to the spin–lattice interaction. For the model described by equations (1)–(6) we use a
phenomenological description of the interaction responsible for the long-term spin relaxation.
The control parameters α, β, γ, and σ can be in general calculated from first principles [24]. In
turn, Nd − Na and NT are usually determined from comparison of the theory and experimental
data on the temperature dependence of the corresponding Hall coefficient [25].

In this paper we discuss the case of a stationary and homogeneous in space solution of
equations (1)–(6), which in the following are labelled with the superscript ‘0’ at the relevant
variables. Let us introduce the following notation:

n0 = n0
↑ + n0

↓, n0
− = n0

↑ − n0
↓,

N0 = N0
↑ + N0

↓, N0
− = N0

↑ − N0
↓, R = (Nd − Na)/NT < 1

(10)

and the relative concentration, n̄0 = n0/NT. Then, from equations (1)–(6) one finds

N̄0 = R − n̄0, (11)

n̄0
− = 1

c↓γ↑ − c↑γ↓

[
NTγ↑γ↓(n̄0)2 + (b↑γ↓ + b↓γ↑)n̄0 − 1

NT
(a↑γ↓ + a↓γ↑)

]
, (12)

N̄0
− = zβ − 1

zβ + 1
N̄0 + 	α

	β

(zα − 1)

(zβ + 1)
n̄0 − 	α

	β

(zα + 1)

(zβ + 1)
n̄0

−, (13)
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where the concentration n̄0 is a solution of the equation

(n̄0)3 + a(n̄0)2 + bn̄0 − c = 0 (14)

and

	α = α↑/σ, 	β = β↑/σ, zα = α↓/α↑, zβ = β↓/β↑. (15)

Explicit expressions for the coefficients a, b, c, a↑,↓, b↑,↓, and c↑,↓ are presented in the
appendix.

Having the solutions for n0 and n0−, one can determine the stationary polarization degree
of the band electrons,

ρe = n0−
n0

. (16)

Similarly, one finds the stationary polarization of electrons in the impurity levels,

ρi = N0−
N0

. (17)

The stationary polarizations ρi and ρe are related via the formula

ρi = zβ − 1

zβ + 1
+ n0

R − n0

	α(zα − 1)

	β(zβ + 1)
− n0

R − n0

	α(zα + 1)

	β(zβ + 1)
ρe. (18)

If one neglects the LTR processes in the impurity system (β↑ = β↓ = 0 in equations (1)–
(4)), then equation (18) takes the form

ρi = − 	γ (1 − R + n0)n0

2(I ∗
L + 1)(I ∗

R + 1)(R − n0)

{
zγ (I ∗

L + 1) − (I ∗
R + 1)

− [
zγ (I ∗

L + 1) + (I ∗
R + 1)

]
ρe

}
, (19)

with

ρe = (zα − 1)/(zα + 1), (20)

zγ = γ↓/γ↑, 	γ = γ↑ NT/σ, I ∗
L,R = SIL,R/σ, (21)

and n̄0 being the solution of equation

(n̄0)2 + (1 − R + B)n̄0 − B R = 0, (22)

where B = (zα + 1)(I ∗
L + 1)(I ∗

R + 1)/{	γ [zα(I ∗
R + 1) + zγ (I ∗

L + 1)]}.
In the other limiting case, α↑ = α↓ = 0, the expressions for ρi and ρe can be written as

ρi = zβ − 1

zβ + 1
, (23)

and

ρe = (R − n0)

2	γ zγ (1 − R + n0)
{zγ (I ∗

L + 1) − (I ∗
R + 1) − [zγ (I ∗

L + 1) + (I ∗
R + 1)]ρi}. (24)

Here n̄0 is the solution of equation (22) for B = [zβzγ (I ∗
L + 1) + I ∗

R + 1]/[	γ zγ (zβ + 1)].
It is worth noting that one should select only physical solutions of equation (22), i.e., those
satisfying the condition 0 � n̄0 � 1.
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3. Numerical results and discussion

From equation (14) (and also equation (22)) follows that the system under consideration can
have one, two or three stationary states for 0 � n̄0 � 1, depending on the control parameters
I ∗
L,R, R, zα , zβ , zγ , 	α , 	β , and 	γ . If we neglect the LTR processes in the magnetic impurity

system (see equation (20)), the spin polarization ρe of band electrons is determined only by
the ratio zα of LTR times for the conduction electrons. At the same time, the degree of
spin polarization ρi of electrons in the impurity levels increases with ρe under the arbitrary
polarization of the light wave, see equation (19). We emphasize that illumination of the system
with the left polarized light may lead to negative ρi, while for the right polarized light the spin
polarization ρi is positive. As follows from equation (19), ρi as a function of n̄0 reaches a
maximum at n̄0

extr = R + √
R < 1.

In the other limiting case, when the LTR processes for magnetic impurities are taken into
account, while those for band electrons are neglected, the value of ρi is determined by zβ

(in agreement with equation (23)), whereas ρe is determined by the concentration of band
electrons, polarization of incident light, and semiconductor parameters. It is important to note
that the increase of ρi leads to smaller values of ρe and this does not depend on the polarization
type of incident light.

In a general case, when we take into account all possible LTR processes, the analysis is
more complex and only numerical analysis is can be performed. We found that the increase of
ρe results then in a decrease of ρi, as follows from equation (18). When n̄0 = 0, the value of
ρi is determined only by the LTR processes in the magnetic impurity system. If the relaxation
rates for spin up and down electrons in the conduction band and the relaxation rates in the
impurity levels are equal, zα = zβ = 1, the spin polarization ρi has the sign opposite to ρe.

Qualitative analysis of equations (18)–(23) leads to the conclusion that our results are in
agreement with general considerations of the physical processes taking place in the electron
spin system under the influence of polarized light (see, e.g., [6, 7]). On the other hand, our
considerations show the importance of LTR processes. We assume that the LTR parameters
can be determined using the ρi = f (ρe) data from non-optical methods such as for instance
EPR measurements [26].

The considered control parameters can be divided into two classes. The first class
includes the external parameters; like the polarization type and intensity of the light I ∗

L,R,
as well as the type and concentration of magnetic impurities (accounted via the parameter
R = (ND − NA)/NT). The second class includes the internal semiconductor parameters; zα ,
zβ , zγ , 	α, 	β , and 	γ . The proposed model allows us to calculate the spin polarization
degrees ρi and ρe as a function of all the control parameters. In figure 1 we show the results
of our calculation of ρe and ρi as a function of 	α and 	β for linear (LR), left (L), and right
(R) polarized light. In the numerical calculations we assumed [19, 21]: γ = 4 × 10−14 m3 s−1,
σ = 8 × 104 s−1, Nd − Na = 2 × 1022 m−3, NT = 7 × 1022 m−3. The values of zα,β,γ

are characteristic for III–V semiconductors [20]: zα = 2.5, zβ = 4/3, zγ = 1.25, and the
value of I ∗

0 = 3 was chosen to fit the theoretically calculated spin polarization degree for
electrons, ρe, to the experimental data (ρe = 0.42 ± 0.08 for GaSb [6] and ρe = 0.46 ± 0.06
for Ga0.7Al0.3As [27]).

Figure 1(a) shows that the dependence of ρe on the parameters 	α and 	β is non-linear
with respect to both arguments. For the same values of the remaining control parameters, the
magnitude of ρe for the left (L), linear (LR), and right (R) polarized light obeys the relation
ρL

e > ρLR
e > ρR

e , which is in qualitative agreement with [7]. Moreover, the calculated values of
ρe agree well with the experimental results presented in [28–30]. In turn, figure 1(b) presents
the dependence of ρi on the parameters 	α and 	β , and shows that ρi behaves qualitatively

5
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Figure 1. Spin polarization degree of the band electrons (a) and the impurity electrons (b) as a
function of the long-term relaxation times for the different polarization of the incident light wave: 1
for I ∗

L = I ∗
0 , I ∗

R = 0; 2 for I ∗
L = I ∗

R = I ∗
LR = I ∗

0 /
√

2; 3 for I ∗
L = 0, I ∗

R = I ∗
0 .

in a similar way as the spin polarization ρe of band electrons. However, it obeys the relation
ρR

i > ρLR
i > ρL

i , which is different from the corresponding one found for ρe. It is worth
noting that the resulting ρL

i is negative for the assumed values of the parameters, as predicted
by equation (18).

According to the results presented in figure 1(a), the spin polarization degree of band
electrons remains constant for 	β varying in a relatively wide range. Assuming constant σ ,
one may consider this as a demonstration of the independence of spin polarization degrees ρe

and ρi on the LTR times for the impurity electrons (i.e. on specific mechanisms of the LTR
processes leading to finite β−1

↑,↓).
Variation of the spin polarization of conduction and impurity electrons, ρe and ρi, with

the spin anisotropy of the LTR processes (described by the parameters zα and zβ ) is shown
in figure 2. Both ρe and ρi strongly depend on the spin asymmetry of the LTR processes
in the conduction band, and only weakly on the spin asymmetry of the LTR processes in the
impurity band. Moreover, for the parameters assumed in figure 2, the polarization of conduction
electrons is only weakly dependent on the light polarization type (see figure 2(a)), while the
spin polarization of impurity electrons is very sensitive to the light polarization, as follows
from figure 2(b).
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Figure 2. Spin polarization degree of the band electrons (a) and the impurity electrons (b) as
a function of the anisotropy of long-term relaxation times, zα and zβ , for 	α = 3 × 104,
	β = 0.06 and different polarization of the incident light wave: 1 for I ∗

L = I ∗
0 , I ∗

R = 0; 2 for

I ∗
L = I ∗

R = I ∗
LR = I ∗

0 /
√

2; 3 for I ∗
L = 0, I ∗

R = I ∗
0 .

4. Summary

We have described behaviour of electron spin polarization in the conduction band and in the
magnetic impurity system of diluted magnetic semiconductors under the influence of polarized
light. Some analytical expressions have been obtained for the corresponding stationary spin
polarization degrees, ρe and ρi, induced by the incident light of various polarizations.

The analytical and numerical results show that the spin polarization of conduction and
impurity electrons is determined not only by the polarization type of incident light, but also by
other system parameters. In particular, the results clearly demonstrate the importance of LTR
processes, and show that both ρe and ρi strongly depend on the LTR processes in the conduction
band, while LTR process in the impurity band are less important. Detailed analysis of the spin
polarizations ρe and ρi as a function of spin anisotropy of LTR process in the conduction and
impurity bands has also been performed.
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Appendix

The coefficients in equations (12)–(14) are defined as:

a = 1

NT

(
c↓ + b↓

γ↓
+ c↑ + b↑

γ↑

)
, (25)

b = 1

N2
Tγ↑γ↓

[
2(b↑c↓ + b↓c↑) − (γ↑a↓ + γ↓a↑)

]
, (26)

c = 2

N3
Tγ↑γ↓

[
c↑a↓ + c↓a↑

]
,

where

a↑ = σ NT
I ∗
L + 1

zβ + 1
zβ R,

a↓ = σ NT
I ∗
R + 1

zβ + 1
R,

b↑ = σ

[
I ∗
L + 1

zβ + 1
zβ + 1

2
	α(1 − zα)

(
I ∗
L + 1

	β(zβ + 1)
+ 1

)
+ 1

2
	γ (1 − R)

]
,

b↓ = σ

[
I ∗
R + 1

zβ + 1
− 1

2
	α(1 − zα)

(
I ∗
R + 1

	β(zβ + 1)
+ 1

)
+ 1

2
	γ zγ (1 − R)

]
,

c↑ = 1

2
σ

[
	α(1 + zα)

(
I ∗
L + 1

	β(zβ + 1)
+ 1

)
+ 	γ (1 − R)

]
,

c↓ = 1

2
σ

[
	α(1 + zα)

(
I ∗
R + 1

	β(zβ + 1)
+ 1

)
+ 	γ zγ (1 − R)

]
.

(27)

The explanation of all other quantities is given in the main text of the paper.
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